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ABSTRACT
We consider the beam-beam interaction for the APIARY 6.3–D design of the

SLAC/LBL/LLNL B factory for a variety of conditions, for a fixed working point just
above the half-integer. We focus primarily on the effect of the collisions at the parasitic
crossing (PC) points. Our studies are based on multiparticle tracking simulations with
Tennyson’s code TRS. We conclude that bunch spacing is the variable with the most
obvious effect on reliability for a given specification of nominal luminosity. In most
cases we can also conclude that running the simulations for three damping times is
sufficient to observe the equilibrium state, at least for ξ0 = 0.03. A certain “universality”
suggests itself: the curves that describe beam blowup vs. normalized PC separation seem
to depend on fewer parameters than they in principle could. Scaling rules can thereby be
conjectured. Further studies are needed in order to confirm this universality.

1. Introduction
We present a comparative assessment of the short-time-average luminosity

performance of the proposed B factory design1 APIARY 6.3–D by varying certain beam-
beam-related parameters under certain assumptions, listed in Sec. 2. Although the design of
the interaction region (IR) has been recently updated,2 we believe that our conclusions
remain qualitatively valid for purposes of relative comparisons. A detailed study along the
lines presented here for the updated design will be presented separately.

Essentially all of the results presented here (and in the CDR1) show that, if it were
not for the effect of the parasitic collisions, the APIARY 6.3–D design would be quite
conservative from the point of view of the beam-beam interaction, provided a suitable
working point is chosen. This conclusion seems to hold true even when the bunch current is
higher than nominal, corresponding to a beam-beam parameter ξ0 = 0.05 rather than to its
nominal  specification of 0.03. Depending on the value of other parameters, however, the
parasitic collisions can induce substantial beam blowup in certain cases that can render the
design less conservative. For this reason the main focus of this comparative assessment is
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whether the parasitic collisions occur far enough apart that they are effectively harmless.
Thus the fundamental variable we have chosen in our comparisons is the separation d
between the nominal orbits of the two beams at the first parasitic crossing (PC) point. In the
limit where d → ∞ all effects of the PCs disappear, and only those effects from the primary
collisions at the interaction point (IP) remain. Our main goal, then, is to assess the relative
effects of the PC collisions in several cases. The nominal specification for APIARY 6.3–D
is d = 2.82 mm; in the updated2 IR design (APIARY 7.5) the specification is d = 3.498 mm.
In keeping with our adopted strategy, however, we take d to be a free parameter that we vary
independently of all others.

All the results presented here are in the form of plots of beam blowup factors σ/σ0
vs. d/σ0x,+. This latter variable is the PC separation in units of the local nominal horizontal
beam size of the LER. The nominal APIARY 6.3–D design implies a value d/σ0x,+ = 7.57.
However, as mentioned above, in our simulations we vary d/σ0x,+ by varying d  while
keeping all other parameters fixed. The calculations were carried out with Tennyson’s code
TRS3 mostly on the San Diego Supercomputer Center’s CRAY Y-MP. In most cases we
have looked at the two by-now customary  values for the nominal beam-beam parameter,
namely ξ0 = 0.03 and ξ0 = 0.05 (all four nominal ξ-parameters are set equal). In all cases
the positron beam energy is 3.1 GeV and the electron beam energy is 9.0 GeV, and the
fractional parts of the tunes are (νx ,νy ) = (0.64, 0.57) for both beams.

Although the predictions of the code compare favorably with certain experimental
results,1 the simulations invoke many simplifying assumptions. For example, we neglect all
lattice nonlinearites in the model for the machine. However, we are concerned only with the
short-time-average luminosity performance, so that we study only the behavior of the core
of the beam. It is reasonable, therefore, to assume that machine nonlinearities are not very
important for our purposes. Nevertheless, until more detailed and complete studies are
carried out, it is prudent to assume that the relative predictions from our simulations are
more reliable than the absolute predictions for any individual case.

We present 12 study cases, which we call “1A,” “1B,” etc. A detailed explanation
of the parameters used in each case is presented in Sec. 3. For now, suffice it to say that the
cases are distinguished by differences in the following parameters: the nominal beam-beam
parameter ξ0, the damping times τ±, the number of particles per bunch N± and the bunch
spacing sB. In addition, we have also varied the following parameters in the simulations: the
number of “superparticles” used to describe the beam, the number of slices into which the
bunch is divided longitudinally, and the number of turns for which the tracking program is
run. These parameters are not varied independently; the details are explained in Sec. 3.

In addition to these 12 cases, we present, for reference, two additional cases, which
we call cases “0A” and “0B.” Case 0A is the corrected version of the CDR’s nominal
case, shown in Fig. 4-91(a) of the CDR.1 Case 0B corresponds exactly to the one shown in
the CDR’s Fig. 4-91(b). The corresponding parameters are stated in Sec. 3.
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2. Assumptions
All basic nominal parameters are listed in tables 1A, 1B, 2A, 2B, 3A and 3B below.

The values of the parameters used in each case are listed in these tables, with a few variants
in some cases. The precise description of all study cases is stated in Sec. 3. Here is a
summary of the assumptions we have made:

2.1 IR lattice
We have assumed the nominal1 APIARY 6.3–D lattice parameters for the IR. The

working point is the same for all 12 cases, namely (νx ,νy ) = (0.64, 0.57) for both beams.
These are the “bare machine” tunes, i.e., in the absence of the beam-beam interaction. For
cases in which ξ0 = 0.03, a particle at the center of the bunch experiences tunes that are
displaced approximately by +0.03 in bothνx andνy from the working point. The beta
functions at the interaction point and other nominal parameters are listed in the tables below.
The RF wavelength, λRF, is 0.6298 m in all cases. We consider two values for the bunch
spacing, namely the nominal sB = 2λRF = 1.2596 m (cases 1A, 1A2, 1B, 1B2, 5A, 6A and
6B) and the alternative value sB = 3λRF = 1.8894 m  (cases 2A, 2A2, 2B, 3A and 3B). If the
bunch spacing is 2λRF, the nominal closed orbit separation at the PC is d = 2.82 mm; if the
bunch spacing is 3λRF, it is d = 7.41 mm. The lattice functions at the corresponding PC
points are listed in the tables. We do not take into account any PCs beyond the first one on
either side of the IP because these “outer” PCs are very weak relative to the first one.

2.2 Primary beam-related parameters
Full beam-beam transparency symmetry4 is assumed; thus the rms beam sizes at the

IP are pairwise equal, and all four nominal beam-beam parameters ξ0 are equal. The values
we have chosen are ξ0 = 0.03 (cases “A”) and ξ0 = 0.05 (cases “B”). In going from a
given case “A” to the corresponding case “B” we have increased the number of particles
per bunch by a factor of 5/3 at fixed emittance. Therefore, the nominal luminosity Ÿ0 is
larger by a factor (5/3)2 in case “B” than in the corresponding case “A.” The actual values
of Ÿ0 in each case are stated below.

2.3 Other parameters
The number of particles per bunch, nominal emittances, rms beam sizes and rms

angular divergences at the collision points are determined by the lattice functions, collision
frequency, and the primary parameters ξ0 and Ÿ0. These are all listed in the tables. The
bunch length σ…, rms energy spread σE/E and synchrotron tuneνs are different for the two
beams, but are held fixed at their specified CDR values throughout our studies.

2.4 Simulation details
In all cases we have chosen 256 “superparticles” per bunch that are Gaussian-

distributed in the six-dimensional phase space at the initial step in the simulation. As time
progresses, the distribution deviates from Gaussian at least to some extent; nevertheless, for



4

the purposes of calculating the beam-beam kick, we compute at every turn the rms sizes and
centers of the distribution, from which the beam-beam force is determined from a well-
known formula.5 Thick lens effects6 during the collision are taken into account by dividing
up the bunch longitudinally into either three or five slices. In those cases in which we use
three slices, these are located at z = 0 and ±σ…. For five slices, the locations are z = 0,
±(7/12)σ…, and ±(7/6)σ…. Depending on the particular case, the simulations are run for
either three or five damping times. Usually the beam sizes settle to a stable value by three
damping times; the actual beam sizes are then calculated by averaging over the stable values.
Radiation damping and quantum excitaqtion, as well as synchrotron oscillations, are
included in the simulation. The arc between the IP and the PC is represented by a linear
transport matrix whose phase advance is specified in the tables below. The arc between one
PC and the next PC (the region “outside” the IR) is also assumed to be linear; its phase
advance is the balance of the tune of the machine.

The beams collide head-on at the IP and are then magnetically separated in the
horizontal plane. In the APIARY 6.3-D design the bunches go into their separate vacuum
pipes only after traveling about 4 m away from the IP; as a result, they experience several
grazing collisions on their way into and out of the IP. There are six such “parasitic
crossings” on either side of the IP in this IR design. These PCs couple the dynamics of all
bunches, so that a completely faithful simulation of the beam-beam dynamics would require
1658 bunches per ring, along with a gap equivalent to 88 bunches. Since this is an
impractical requirement for any present-day simulation, we have made two simplifying
approximations: (i) we consider only the first PC on either side of the IP, and (ii) we use
only one bunch per ring, which is “re-used” so that this bunch collides three times per turn
– two PCs plus the primary collision at IP – with the same partner in the other beam. The
first approximation is quite reasonable because the first PC overwhelms all the others1 (the
first PC is separated from the IP by the beam separator dipole magnet; the remaining PCs
are separated from the first one by quadrupole magnets). The second approximation rests
on the sensible assumption that, in reality (or in a faithful simulation), the particle
distributions will not differ much from bunch to bunch, especially when seen at a distance,
as is the case at the PCs. Stated in more technical terms, we are assuming that the coherent
dipole modes of the beams are effectively decoupled from the quadrupole modes, and that
the quadrupole modes are weakly coupled from bunch to bunch. Although we cannot verify
the validity of these assumptions within the scope of our approximations, at least we have
monitored our results, to the extent that is possible, for consistency with the assumptions.

3. Details of study cases
Table 4 provides a summary of the parameters used for all 12 simulation cases.

Here we provide a detailed case-by-case explanation:
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3.1 Case 0A (Figs. 1 and 2)
This case is the one shown in Fig. 4-91(a) of the CDR,1 corrected for an error. We

call this the “old nominal CDR” case, corresponding to the old working point. The
parameters are listed in Table 1A, except that the tunes have the old values (νx ,νy ) = (0.09,
0.05) for both beams. This case has ξ0 = 0.03 and Ÿ0 = 3 × 1033 cm–2 s–1. The simulation
was run for 15,000 turns, or about three damping times, with 128 superparticles per bunch
divided up longitudinally into three slices.

3.2 Case 0B (Fig. 3)
This is the “high-current” version of case 0A. It is shown in Fig. 4-91(b) of the

CDR. The parameters are listed in Table 1B, except that the tunes are (0.09, 0.05) for both
beams. In this case ξ0=0.05 and Ÿ0 = 8.33 × 1033 cm–2 s–1. The higher value for ξ0 is
achieved by increasing N± by a factor of 5/3 from case 0A, keeping the nominal emittances
fixed. The simulation was run for 15,000 turns, with 128 superparticles per bunch divided
up longitudinally into three slices.

3.3 Case 1A (Fig. 4)
We call this the “nominal CDR” case. The parameters are listed in Table 1A. This

case has ξ0 = 0.03 and Ÿ0 = 3 × 1033 cm–2 s–1. The only difference with the “old nominal
CDR” case is the working point, which, as mentioned above, is now taken to be (νx ,νy ) =
(0.64, 0.57) for both beams. The same working point is used in all subsequent cases
presented here. The simulation was run for 15,000 turns, with 256 superparticles per bunch
divided up longitudinally into three slices.

3.4 Case 1A2 (Fig. 5)
Same as case 1A except that the damping times (horizontal and vertical) are exactly

equal for both beams. The parameters are those in Table 1A except that the damping times
are τ+ = τ– = 5,014 turns. The simulation was run for 15,000 turns, with 256 superparticles
per bunch divided up longitudinally into three slices.

3.5 Case 1B (Fig. 6)
This is the high-current version of case 1A, except that the number of superparticles

used in this case was 128. The full set of parameters is listed in Table 1B. In this case ξ0 =
0.05 and Ÿ0 = 8.33 × 1033 cm–2 s–1. As in case 0B, the higher value for ξ0 is achieved by
increasing N± by a factor of 5/3 from case 1A, keeping the nominal emittances fixed. The
simulation was run for 15,000 turns, with the bunch divided up longitudinally into three
slices.

3.6 Case 1B2 (Fig. 7)
This is the same as case 1B except that we used 256 superparticles per bunch.
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3.7 Case 2A (Fig. 8)
In this case the bunch spacing is 50% larger than in case 1A, namely sB = 3λRF =

1.89 m. The motivation for this  increase is the desire to weaken the effect of the parasitic
collisions: in this case the first PC occurs at a distance Δs = 94.47 cm from the IP, where
the nominal orbit separation is 7.41 mm instead of 2.82 mm. Because the bunch collision
frequency is down by a factor of 1.5 relative to case 1A, the nominal luminosity would
decrease by the same factor if the bunch currents and sizes were left unchanged. In order to
keep ξ0 and Ÿ0 at their nominal values of 0.03 and 3 × 1033 cm–2 s–1, respectively, we have
increased the number of particles per bunch N± and the four emittances ε0 by 50% relative
to case 1A; we call these “fat bunches” (the total beam current remains unchanged relative
to case 1A). All parameters are listed in Table 2A, which reflects these changes. The
simulation was run for 15,000 turns, with 128 superparticles per bunch divided up
longitudinally into three slices.

3.8 Case 2A2 (Fig. 9)
This is the same as case 2A except that we used 256 superparticles per bunch.

3.9 Case 2B (Fig. 10)
This is the high-current version of case 2A2. The full set of parameters is listed in

Table 2B. In this case ξ0 = 0.05 and Ÿ0 = 8.33 × 1033 cm–2 s–1. As before, the higher value
for ξ0 is achieved by increasing N± by a factor of 5/3 from case 2A, keeping the nominal
emittances fixed. The simulation was run for 15,000 turns, with 256 superparticles per
bunch divided up longitudinally into three slices.

3.10 Case 3A (Fig. 11)
This is an intermediate case between 1A and 2A: the bunch currents and emittances

are as in case 1A, but the bunch spacing is sB = 3λRF  = 1.89 m. Thus ξ0 = 0.03, but the
nominal luminosity is only 2/3 of case 1A, namely Ÿ0 = 2 × 1033 cm–2 s–1. The full set of
parameters is listed in Table 3A. The simulation was run for 15,000 turns, with 256
superparticles per bunch divided up longitudinally into three slices.

3.11 Case 3B (Fig. 12)
This is the high-current version of case 3A, with ξ0 = 0.05. The higher value for ξ0

is achieved by increasing N± by a factor of 5/3 from case 3A at fixed nominal emittances.
The resultant luminosity is a factor (5/3)2 larger than in case 3A, namely Ÿ0 = 5.56 × 1033
cm–2 s–1. The full set of parameters is listed in Table 3B. The simulation was run for
15,000 turns, with 256 superparticles per bunch divided up longitudinally into three slices.

3.12 Case 5A (Fig. 13)
This is the same as case 1A2 except that the LER damping time is doubled, namely

τx+ = τy+ = 10,028 turns. The parameters are listed in Table 1A, except for these changes.



7

The HER damping time is the same as in case 1A, namely τx–  = τy–  = 5,014 turns. The
simulation was run for 30,000 turns, or about three LER damping times, with 256
superparticles per bunch divided up longitudinally into three slices. The simulation was
“weak-strong,” in which the HER bunch sizes were held fixed at their nominal values
throughout the simulation. We carried out one spot check with a strong-strong simulation
for the nominal value of the PC orbit separation, d = 2.82 mm.

3.13 Case 6A (Fig. 14)
Same as case 1A2 (horizontal and vertical damping times are the same for both

rings, τ+ = τ– = 5,014 turns), except that the simulation was run for 25,000 turns, or about
five damping times, with 256 superparticles per bunch divided up longitudinally into five
slices. The parameters are listed in Table 1A, except for these changes in the values of the
damping times.

3.14 Case 6B (Fig. 15)
High-current version of case 6A, with ξ0 = 0.05 and Ÿ0 = 8.33 × 1033 cm–2 s–1. As

before, the higher value for ξ0 is achieved by increasing N± by a factor of 5/3 from case 6A,
keeping the nominal emittances fixed. The simulation was run for 25,000 turns, or about
five damping times, with 256 superparticles per bunch divided up longitudinally into five
slices. The parameters are listed in Table 1B, except for the changes in the values of the
damping times mentioned in Case 6A.

4. Discussion of results
We now compare the results for these 12 cases, shown in the plots for the beam

blowup factors σ/σ0 vs. d/σ0x,+. As mentioned above, in these plots we vary d while
keeping all other parameters fixed.

4.1 Old vs. new working points (0A vs. 1A and 0B vs. 1B2)
By comparing cases 0A with 1A (Fig. 16) one can see that the onset of large beam

blowup as d →  0 is closer to the nominal PC separation for the old working point. Thus
the new working point provides a larger margin of comfort. As d → ∞ the effect of the PCs
disappear, and the remaining blowup is due exclusively to the primary collisions at the IP.
This asymptotic value for the blowup factor is larger for the new working point than for the
old one, and it has been sensibly reached for the nominal value of d in case 1A but not in
case 0A. For the nominal value of d, the blowup factor for the LEB in the vertical direction,
~30%, is the same for the new working point as it is for the old working point. This results
in a small degradation of the luminosity from its nominal value, yielding a dynamical value
Ÿ~2.6 × 1033 cm–2 s–1 for both cases 0A and 1A.

Qualitatively similar remarks apply to the high-current (ξ0 = 0.05) cases 0B and
1B2 (Fig. 17). For the old working point the LEB’s vertical blowup factor is ~ 3, while it is
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~ 2 for the new working point. This blowup results in a substantial reduction of the
luminosity relative to its nominal value; however, since the nominal value in this case is 8.33
× 1033 cm–2 s–1, the resultant absolute dynamical value for case 1B is still quite high, Ÿ ~
5.3 × 1033 cm–2 s–1. For case 0B, the larger blowup brings the dynamical luminosity down
to ~3 × 1033 cm–2 s–1, which shows that, for the old working point, the increase in bunch
current is essentially ineffective in increasing the luminosity performance. In other words,
the luminosity has reached saturation as a function of bunch current, and the beam-beam
limit has already been reached at the nominal specification ξ0 = 0.03.

In case 1B2 one can also see that the beams go into a “flip-flop” configuration for
d/σ0x,+ ñ 5, in which the HEB is essentially of nominal size while the LEB is blown up
substantially in the vertical dimension. Due to the nature of the approximations we are
making, we are not certain that this is a realistic prediction because in this case the PC
collisions are effectively strong; in any case, this result indicates that it seems prudent to
stay away from possible IR designs in which d  is too small.

4.2 Approximately equal vs. exactly equal damping times (1A vs. 1A2)
We have done most of the beam-beam simulations presented here and in Sec. 4.4 of

the CDR with τ+ = 4400 turns and τ– = 5014 turns, in spite of the fact that the nominal
APIARY 6.3–D design, described in other sections of the CDR, specifies τ+ = τ– = 5014
turns (with τx  = τy for either ring). The discrepancy is a result of historical reasons: we
began the beam-beam calculations before the lattice details were finalized, and kept the initial
values unchanged despite subsequent lattice developments.

Comparing cases 1A and 1A2 (Fig. 18), one can see that there is no significant
difference between these two cases, at least for d ∆ nominal value; thus the dynamical value
of the luminosity for case 1A2 for d = nominal is Ÿ ~ 2.6 × 1033 cm–2 s–1. The different
behavior in the two cases for small values of d is interesting, but this is of no immediate
concern to us. From this comparison we may conclude that the simulation results with τ+ =
4400 turns are valid predictors for the nominal case with τ+ = 5014 turns, at least for ξ0 =
0.03.

4.3 Three slices and short runs vs. five slices and long runs (1A2 vs. 6A and 1B2 vs. 6B)
In comparing cases 1A2 with 6A (Fig. 19) one can see that there is no qualitative

difference. The dip in the blowup factors in case 1A2 for d/σ0x,+≈ 6 has disappeared in the
more accurate calculation of case 6A. In any case, the “short-cut” calculation 1A2 seems to
be a reliable predictor of beam blowup for d  ∆ nominal value for ξ0 = 0.03. The dynamical
luminosity for case 6A is Ÿ ~ 2.6 × 1033 cm–2 s–1.

Similar conclusions apply when comparing the corresponding high-current (ξ0 =
0.05) cases 1B2 and 6B (Fig. 20). Actually, this particular comparison skips one step
because case 1B2 has τ+ = 4400 turns, whereas 6B has τ+ = 5014 turns. We are assuming
that, for ξ0 = 0.05, there are no significant differences when going from τ+ = 4400 turns to
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τ+ = 5014 turns with all other parameters fixed. The dynamical luminosity in both cases
1B2 and 6B is Ÿ ~ 5.3 × 1033 cm–2 s–1.

4.4 τ+ = 5014 turns vs. τ+ = 10028 turns (1A2 vs. 5A)
The value of the LER damping time, τ+ = 5014 turns, assumes the use of wigglers;

the natural damping time is substantially longer than this. It would be advantageous to
reduce the strength of the wigglers or to dispense with them altogether. This would result in
very different damping times for the two rings. Case 5A, with τ+ = 10028 turns,  represents
one step in this direction. In this case three damping times means ~30000 turns, so the
simulation is quite expensive. In order to get a first impression, we have therefore carried
out a less expensive weak-strong simulation, in which the HEB sizes are held fixed while
the LEB is allowed to evolve dynamically. We have carried out one strong-strong spot-
check for the nominal value of d. In this spot-check only the vertical blowup of the LER,
σy,+/σ0y,+, is significantly different from the weak-strong results. In comparing cases 1A2
with 5A (Fig. 21) one can see that there is no qualitative difference for d/σ0x,+ ÷ 6. The
dynamical luminosity for case 5A is Ÿ ~ 2.7 × 1033 cm–2 s–1, which is essentially the same
as in cases 1A2 and 1A. It seems, therefore, that longer damping times are possible for the
LER without significant adverse effects on the beam blowup and luminosity performance, at
least for ξ0 = 0.03. This conclusion, however, needs to be tested with more simulations, over
a larger range of parameter values. In particular, we do not yet have any indication whether it
is true for higher values of ξ0.

4.5  sB = 2λRF vs. sB = 3λRF (1A vs. 2A2 and 1B2 vs. 2B)
The motivation for increasing the bunch spacing is to try to weaken the effect of the

PCs even further, should the need arise. In all cases “2” the normalized PC separation is
d/σ0x,+ = 9.17 rather than 7.57 for cases “0” and “1.” As explained before, the price to be
paid is a 50% increase in the bunch current plus a 50% increase in the nominal emittances
of both beams (“fat bunches”). Comparing the blowup plots for cases 1A and 2A2 (Fig.
22), one can see that the curves themselves have quite similar behavior: in both cases the
onset of substantial beam blowup happens for a “threshold” d/σ0x,+ ñ 6. The advantage of
case 2A2 over 1A is the increased spacing between the actual value of d/σ0x,+ and the
threshold for the onset of significant blowup. This provides a greater margin of comfort in
case 2A2, although the actual blowup is quite similar in both cases, yielding a dynamical
luminosity Ÿ ~ 2.7 × 1033 cm–2 s–1 in case 2A2.

Qualitatively similar conclusions apply when comparing the corresponding high-
current cases 1B2 and 2B (Fig. 23). However, the blowup is smaller in 2B than in 1B2,
yielding a  dynamical luminosity Ÿ ~ 6.5 × 1033 cm–2 s–1 for 2B and ~ 5.3 × 1033 cm–2
s–1 in 1B2.
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4.6 “Fat” bunches vs. nominal bunches (2A2 vs. 3A and 2B vs. 3B)
All cases “2” and “3” have a bunch spacing sB = 3λRF = 1.89 m; the difference is

that in cases “2” the bunches are fat (see previous paragraph), whereas in cases “3” the
bunch parameters are the same as in the respective cases “1.” In cases 3A and 3B the
normalized PC separation is d/σ0x,+ = 11.2, which is even more comfortable than the 9.17
value in cases “2.” As before, when comparing the plots for cases 2A2 and 3A (Fig. 24),
one sees that the curves themselves are similar; the advantage of 3A over 2A2 is the
increased safety margin. The price for this increase is paid in luminosity, whose nominal
value is Ÿ0 = 2 × 1033 cm–2 s–1 rather than 3 × 1033 cm–2 s–1 in cases 1A, 1A2, 2A and
2A2. However, the dynamical luminosities are closer to each other than their nominal
counterparts, with Ÿ ~ 1.9 × 1033 cm–2 s–1 for 3A and Ÿ ~ 2.7 × 1033 cm–2 s–1 for 2A2.

Qualitatively similar remarks apply when comparing the corresponding high-current
cases 2B and 3B (Fig. 25): case 3B has a greater safety margin than 2B, although the
nominal luminosities are different, Ÿ0 = 5.56 × 1033 cm–2 s–1 for case 3B and Ÿ0 = 8.33
× 1033 cm–2 s–1 for case 2B. Because of the different amounts of beam blowup, however,
the dynamical values for the luminosity are closer to each other, Ÿ ~ 4.4 × 1033 cm–2 s–1
and Ÿ ~ 6.5 × 1033 cm–2 s–1, respectively.

4.7 256 vs. 128 superparticles per bunch (2A2 vs. 2A and 1B2 vs. 1B)
In comparing cases 2A2 with 2A (ξ0 = 0.03) one sees (Fig. 26) that the blowup

curves are quite similar for d/σ0x,+ ÷ 5, so that the predictions of the short-cut calculation
2A seem to be reliable for the relevant values of d/σ0x,+. In comparing 1B2 with 1B (ξ0 =
0.05) one sees (Fig. 27) that the agreement is only qualitative, although the actual value of
the beam blowup factor is the same in  both cases.

5. Conclusions
(1) The vertical size of the LEB tends to blow up the most. This is probably due to

the large value of βy,+ at the PC location. Since βy,+ is the smallest of the four beta-
functions at the IP, it is also the largest one at the PC. Indeed, the contribution of the PC to
the total beam-beam parameter is largest1 for ξy,+.

(2) Generally speaking, when looking at the set of all cases “A” (ξ0 = 0.03) and the
set of all cases “B” (ξ0 = 0.05), one observes an approximate universality: all curves “ A ”
are roughly similar, with a threshold for the onset of substantial beam blowup occurring at
d/σ0x,+ ñ 6; similarly, all curves “B” are roughly similar, with substantial beam blowup
occurring at d/σ0x,+ ñ 7.5. The asymptotic (d → ∞) vertical blowup factor for the LEB is
~15–30% for cases “A” and ~50% for cases “B.” When comparing different working
points (see plots in the CDR), one sees that the blowup threshold values and the asymptotic
blowup factors are tune-dependent. The universality conjecture one might draw from this is
the following: the beam blowup curves depend on the β∗’s, working point, beam-beam
parameter, synchrotron tune, energy spread and bunch length, but they do not depend on
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nominal luminosity, damping times or bunch current as long as the previous parameters are
kept fixed. We are unaware of any underpinnings of this universality, if any indeed exists;
so far, this is a purely empirical and approximate observation from our set of simulation
results, for a very limited set of parameters. In particular, the conjectured dependence of the
scaling rules on the LER damping time is the weakest, since we have only one point (strong-
strong simulation in case 5A).

(3) The new working point, just above the half-integer, leads to a wider safety
margin than the old working point, just above the integer, that was used in the CDR
calculations. However, the amount of beam blowup is about the same as in the old working
point.

(4) Among the cases we have studied, the largest degree of reliability (the least
amount of beam blowup, and the least effect from the PCs) is achieved in case 3A, in which
the bunches have their nominal emittance and number of particles, but their spacing is sB =
3λRF = 1.89 m rather than the nominal sB = 2λRF = 1.26 m. Of course, the price to pay is a
33% reduction in luminosity, which in this case would be Ÿ~1.9 × 1033 cm–2 s–1.

(5) For a luminosity close to the nominal target of 3 × 1033 cm–2 s–1, it is more
reliable to operate at sB = 3λRF = 1.89 m (case 2A2) rather than the nominal sB = 2λRF =
1.26 m (case 1A). The price to pay is a 50% increase in the bunch current and in the
nominal emittances over the nominal specifications (the total beam current, however, remains
unchanged). However, both cases 1A and 2A2 have comparable amounts of beam blowup,
yielding a dynamical value for the luminosity of Ÿ ~ 2.6 × 1033 cm–2 s–1.

(6) If a higher-than-nominal luminosity is desired, once again it is safer to operate at
sB = 3λRF  = 1.89 m with nominal emittances but with bunch currents 67% larger than
nominal (case 3B), rather than at sB = 2λR F  = 1.26 m with 50% larger-than-nominal
emittances and 50% larger-than-nominal bunch currents (case 1B). However, case 3B yields
Ÿ ~ 4.4 × 1033 cm–2 s–1, while case 1B yields Ÿ ~ 5.3 × 1033 cm–2 s–1. Another
possibility for larger-than-nominal luminosity is case 2B (with sB = 3λRF = 1.89 m), which
yields an even higher value Ÿ ~ 6.5 × 1033 cm–2 s–1, but the price to pay is 50% larger-
than-nominal emittances plus bunch currents that are a factor of 5/2 times nominal (3/2 ‡
5/3 = 5/2), along with lessened reliability.

(7) Not surprisingly, simulations with τ+ = 5014 turns yield similar results to those
with τ+ = 4400 turns.

(8) A simulation for ξ0 = 0.03 with τ+ = 10028 turns and τ– = 5014 turns yields
similar results to the nominal case with τ+ = τ– = 5,014 turns. However, this result is based
on a weak-strong simulation with a strong-strong spot-check, and needs to be confirmed
further.



12

(9) Simulations that run for 5 damping times with 5 slices yield similar results to
those that run for 3 damping times with 3 slices, at least for ξ0 = 0.03.
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TABLE 1A – PRIMARY PARAMETERS
Nominal CDR case;   Ÿ0 = 3 × 1033 cm–2 s–1;   ξ0=0.03

LER (e+ ) HER (e–)
Ÿ0 [cm–2 s–1] 3 × 1033

C [m] 2,200 2,200
E [GeV] 3.1 9.0
sB [m] 1.2596 1.2596
fc  [MHz] 238.000
VRF [MV] 8.0 18.5
fRF [MHz] 476.000 476.000
φs [deg] 170.6 168.7
α 1.15 × 10–3 2.41 × 10–3

νs 0.0403 0.0520
σ… [cm] 1.0 1.0
σE/E 1.00 × 10–3 0.616 × 10–3

N 5.630 × 1010 3.878 × 1010

ε0x [nm-rad] 91.86 45.93
ε0y [nm-rad] 3.675 1.838
β*x [m] 0.375 0.750
β*y [m] 0.015 0.030
σ∗0x [µm] 185.6 185.6
σ∗0y [µm] 7.425 7.425
τx [turns] 4,400 5,014
τy [turns] 4,400 5,014



14

TABLE 1A – IP AND PC PARAMETERS
Nominal CDR case;   Ÿ0 = 3 × 1033 cm–2 s–1;    ξ0=0.03

LER (e+) HER (e–)
Δs [cm] 62.9816
d [mm] 2.82

IP 1st PC IP 1st PC
Δνx 0 0.1643 0 0.1111
Δνy 0 0.2462 0 0.2424
βx [m] 0.375 1.51 0.750 1.30
βy [m] 0.015 25.23 0.030 13.01
αx 0 –2.42 0 –1.06
αy 0 –29.25 0 –18.74
σ0x [µm] 185.6 372.4 185.6 244.4
σ0y [µm] 7.425 304.5 7.425 154.6
σ0x’ [mrad] 0.495 0.646 0.247 0.274
σ0y’ [mrad] 0.495 0.353 0.247 0.223
d/σ0x 0 7.572 0 11.541
ξ0x 0.03 –0.000544 0.03 –0.000234
ξ0y 0.03 +0.009096 0.03 +0.002345
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TABLE 1B – PRIMARY PARAMETERS
CDR lattice but higher N;    Ÿ0 = 8.33 × 1033 cm–2 s–1;    ξ0=0.05

LER (e+ ) HER (e–)
Ÿ0 [cm–2 s–1] 8.33 × 1033

C [m] 2,200 2,200
E [GeV] 3.1 9.0
sB [m] 1.2596 1.2596
fc  [MHz] 238.000
VRF [MV] 8.0 18.5
fRF [MHz] 476.000 476.000
φs [deg] 170.6 168.7
α 1.15 × 10–3 2.41 × 10–3

νs 0.0403 0.0520
σ… [cm] 1.0 1.0
σE/E 1.00 × 10–3 0.616 × 10–3

N 9.383 × 1010 6.463 × 1010

ε0x [nm-rad] 91.86 45.93
ε0y [nm-rad] 3.675 1.838
β*x [m] 0.375 0.750
β*y [m] 0.015 0.030
σ∗0x [µm] 185.6 185.6
σ∗0y [µm] 7.425 7.425
τx [turns] 4,400 5,014
τy [turns] 4,400 5,014
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TABLE 1B – IP AND PC PARAMETERS
CDR lattice but higher N;    Ÿ0 = 8.33 × 1033 cm–2 s–1;    ξ0=0.05

LER (e+) HER (e–)
Δs [cm] 62.9816
d [mm] 2.82

IP 1st PC IP 1st PC
Δνx 0 0.1643 0 0.1111
Δνy 0 0.2462 0 0.2424
βx [m] 0.375 1.51 0.750 1.30
βy [m] 0.015 25.23 0.030 13.01
αx 0 –2.42 0 –1.06
αy 0 –29.25 0 –18.74
σ0x [µm] 185.6 372.4 185.6 244.4
σ0y [µm] 7.425 304.5 7.425 154.6
σ0x’ [mrad] 0.495 0.646 0.247 0.274
σ0y’ [mrad] 0.495 0.353 0.247 0.223
d/σ0x 0 7.572 0 11.541
ξ0x 0.05 –0.000907 0.05 –0.000391
ξ0y 0.05 +0.015160 0.05 +0.003909
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TABLE 2A – PRIMARY PARAMETERS
sB = 3λRF = 1.8894 m;      Ÿ0 = 3 × 1033 cm–2 s–1;    ξ0=0.03

LER (e+ ) HER (e–)
Ÿ0 [cm–2 s–1] 3 × 1033

C [m] 2,200 2,200
E [GeV] 3.1 9.0
sB [m] 1.8894 1.8894
fc  [MHz] 158.667
VRF [MV] 8.0 18.5
fRF [MHz] 476.0 476.0
φs [deg] 170.6 168.7
α 1.15 × 10–3 2.41 × 10–3

νs 0.0403 0.0520
σ… [cm] 1.0 1.0
σE/E 1.00 × 10–3 0.616 × 10–3

N 8.445 × 1010 5.817 × 1010

ε0x [nm-rad] 137.8 68.90
ε0y [nm-rad] 5.513 2.757
β*x [m] 0.375 0.750
β*y [m] 0.015 0.030
σ∗0x [µm] 227.3 227.3
σ∗0y [µm] 9.094 9.094
τx [turns] 4,400 5,014
τy [turns] 4,400 5,014
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TABLE 2A – IP AND PC PARAMETERS
sB = 3λRF = 1.8894 m;      Ÿ0 = 3 × 1033 cm–2 s–1;    ξ0=0.03

LER (e+) HER (e–)
Δs [cm] 94.47
d [mm] 7.41

IP 1st PC IP 1st PC
Δνx 0 0.1844 0 0.1403
Δνy 0 0.2478 0 0.2453
βx [m] 0.375 4.74 0.750 2.41
βy [m] 0.015 32.65 0.030 24.49
αx 0 –9.20 0 –2.60
αy 0 8.68 0 –15.95
σ0x [µm] 227.3 808.2 227.3 407.5
σ0y [µm] 9.094 424.3 9.094 259.8
σ0x’ [mrad] 0.606 1.578 0.303 0.471
σ0y’ [mrad] 0.606 0.114 0.303 0.170
d/σ0x 0 9.169 0 18.185
ξ0x 0.03 –0.000371 0.03 –0.000094
ξ0y 0.03 +0.002557 0.03 +0.000959
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TABLE 2B – PRIMARY PARAMETERS
sB = 3λRF = 1.8894 m;      Ÿ0 = 8.33 × 1033 cm–2 s–1;    ξ0=0.05

LER (e+ ) HER (e–)
Ÿ0 [cm–2 s–1] 8.33 × 1033

C [m] 2,200 2,200
E [GeV] 3.1 9.0
sB [m] 1.8894 1.8894
fc  [MHz] 158.667
VRF [MV] 8.0 18.5
fRF [MHz] 476.000 476.000
φs [deg] 170.6 168.7
α 1.15 × 10–3 2.41 × 10–3

νs 0.0403 0.0520
σ… [cm] 1.0 1.0
σE/E 1.00 × 10–3 0.616 × 10–3

N 14.075 × 1010 9.695 × 1010

ε0x [nm-rad] 137.8 68.90
ε0y [nm-rad] 5.513 2.757
β*x [m] 0.375 0.750
β*y [m] 0.015 0.030
σ∗0x [µm] 227.3 227.3
σ∗0y [µm] 9.094 9.094
τx [turns] 4,400 5,014
τy [turns] 4,400 5,014
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TABLE 2B – IP AND PC PARAMETERS
sB = 3λRF = 1.8894 m;      Ÿ0 = 8.33 × 1033 cm–2 s–1;    ξ0=0.05

LER (e+) HER (e–)
Δs [cm] 94.47
d [mm] 7.41

IP 1st PC IP 1st PC
Δνx 0 0.1844 0 0.1403
Δνy 0 0.2478 0 0.2453
βx [m] 0.375 4.74 0.750 2.41
βy [m] 0.015 32.65 0.030 24.49
αx 0 –9.20 0 –2.60
αy 0 8.68 0 –15.95
σ0x [µm] 227.3 808.2 227.3 407.5
σ0y [µm] 9.094 424.3 9.094 259.8
σ0x’ [mrad] 0.606 1.578 0.303 0.471
σ0y’ [mrad] 0.606 0.114 0.303 0.170
d/σ0x 0 9.169 0 18.185
ξ0x 0.05 –0.000619 0.05 –0.000157
ξ0y 0.05 +0.004262 0.05 +0.001599
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TABLE 3A – PRIMARY PARAMETERS
sB = 3λRF = 1.8894 m;  N, ε0 = nominal;  Ÿ0 = 2 × 1033 cm–2 s–1;  ξ0=0.03

LER (e+ ) HER (e–)
Ÿ0 [cm–2 s–1] 2 × 1033

C [m] 2,200 2,200
E [GeV] 3.1 9.0
sB [m] 1.8894 1.8894
fc  [MHz] 158.667
VRF [MV] 8.0 18.5
fRF [MHz] 476.000 476.000
φs [deg] 170.6 168.7
α 1.15 × 10–3 2.41 × 10–3

νs 0.0403 0.0520
σ… [cm] 1.0 1.0
σE/E 1.00 × 10–3 0.616 × 10–3

N 5.630 × 1010 3.878 × 1010

ε0x [nm-rad] 91.86 45.93
ε0y [nm-rad] 3.675 1.838
β*x [m] 0.375 0.750
β*y [m] 0.015 0.030
σ∗0x [µm] 185.6 185.6
σ∗0y [µm] 7.425 7.425
τx [turns] 4,400 5,014
τy [turns] 4,400 5,014
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TABLE 3A – IP AND PC PARAMETERS
sB = 3λRF = 1.8894 m;  N, ε0 = nominal;  Ÿ0 = 2 × 1033 cm–2 s–1;  ξ0=0.03

LER (e+) HER (e–)
Δs [cm] 94.47
d [mm] 7.41

IP 1st PC IP 1st PC
Δνx 0 0.1844 0 0.1403
Δνy 0 0.2478 0 0.2453
βx [m] 0.375 4.74 0.750 2.41
βy [m] 0.015 32.65 0.030 24.49
αx 0 –9.20 0 –2.60
αy 0 8.68 0 –15.95
σ0x [µm] 185.6 659.9 185.6 332.7
σ0y [µm] 7.425 346.4 7.425 212.1
σ0x’ [mrad] 0.495 1.288 0.247 0.385
σ0y’ [mrad] 0.495 0.093 0.247 0.138
d/σ0x 0 11.23 0 22.27
ξ0x 0.03 –0.000247 0.03 –0.000063
ξ0y 0.03 +0.001705 0.03 +0.000639
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TABLE 3B – PRIMARY PARAMETERS
sB = 3λRF = 1.8894 m;  ε0 = nominal;  Ÿ0 = 5.56 × 1033 cm–2 s–1;  ξ0=0.05

LER (e+ ) HER (e–)
Ÿ0 [cm–2 s–1] 5.56 × 1033

C [m] 2,200 2,200
E [GeV] 3.1 9.0
sB [m] 1.8894 1.8894
fc  [MHz] 158.667
VRF [MV] 8.0 18.5
fRF [MHz] 476.000 476.000
φs [deg] 170.6 168.7
α 1.15 × 10–3 2.41 × 10–3

νs 0.0403 0.0520
σ… [cm] 1.0 1.0
σE/E 1.00 × 10–3 0.616 × 10–3

N 9.383 × 1010 6.463 × 1010

ε0x [nm-rad] 91.86 45.93
ε0y [nm-rad] 3.675 1.838
β*x [m] 0.375 0.750
β*y [m] 0.015 0.030
σ∗0x [µm] 185.6 185.6
σ∗0y [µm] 7.425 7.425
τx [turns] 4,400 5,014
τy [turns] 4,400 5,014
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TABLE 3B – IP AND PC PARAMETERS
sB = 3λRF = 1.8894 m;  ε0 = nominal;  Ÿ0 = 5.56 × 1033 cm–2 s–1;  ξ0=0.05

LER (e+) HER (e–)
Δs [cm] 94.47
d [mm] 7.41

IP 1st PC IP 1st PC
Δνx 0 0.1844 0 0.1403
Δνy 0 0.2478 0 0.2453
βx [m] 0.375 4.74 0.750 2.41
βy [m] 0.015 32.65 0.030 24.49
αx 0 –9.20 0 –2.60
αy 0 8.68 0 –15.95
σ0x [µm] 185.6 659.9 185.6 332.7
σ0y [µm] 7.425 346.4 7.425 212.1
σ0x’ [mrad] 0.495 1.288 0.247 0.385
σ0y’ [mrad] 0.495 0.093 0.247 0.138
d/σ0x 0 11.23 0 22.27
ξ0x 0.05 –0.000412 0.05 –0.000105
ξ0y 0.05 +0.002841 0.05 +0.001066


